1. Find the absolute maximum and minimum values of the following functions:

(a)
$$f(x) = x^5 - x^3 + 2$$
, $-1 \le x \le 1$

(b)
$$f(x) = x^4 - 3x^3 + 3x^2 - x$$
, $0 \le x \le 2$

(c)
$$f(x) = \frac{x}{x^2 - x + 1}$$
, $0 \le x \le 3$.

(d)
$$f(x) = x\sqrt{x - x^2}$$

(e)
$$f(x) = x - 2\cos(x)$$
, $-2 \le x \le 0$.

2. For the following functions, (i) find the intervals on which f is increasing and decreasing, (ii) find the local maximum and minimum values of f.

(a)
$$f(x) = 2x^3 + 3x^2 - 36x$$

(b)
$$f(x) = x^4 + 2x^2 + 3$$

(c)
$$f(x) = \frac{x}{x^2+1}$$

(d)
$$\sin(x) + \cos(x)$$
, $0 \le x \le 2\pi$

- 3. Find two numbers whose difference is 100 and whose product is a minimum.
- 4. The sum of two positive numbers is 16. What is the smallest possible value of the sum of their squares?
- 5. What is the minimum vertical distance between the parabolas $y = x^2 + 1$ and $y = x x^2$?
- 6. Find the dimensions of a rectangle with area 1000 m² whose perimeter is as small as possible.