MATH 115 Linear Algebra Worksheet 7

December 31, 2020

NOTE: In the problems below, \mathbb{R}^n should be considered with their standard inner product.

1. Find the unit vectors in the direction of the following vectors.

(a)
$$(1,2)$$
 (b) $(1,-3,7)$ (c) $(1,2,5)$.

2. Compute the following inner products:

- (a) $\langle (2,-1), (5,1) \rangle$.
- (b) $\langle (0,4), (-8,-1) \rangle$.
- (c) $\langle (-1,4,2), (4,6,1) \rangle$.

3. Find the value(s) of a that make the given vectors orthogonal:

- (a) $\vec{u} = (a, 1), \vec{v} = (2, -3).$
- (b) $\vec{u} = (a, 2a, 4), \vec{v} = (-1, 4, 2).$
- (c) $\vec{u} = (3a, 0, 4), \vec{v} = (a, 0, a).$
- (d) $\vec{u} = (-6, a, 2), \vec{v} = (a, a^2, a).$

4. Are the given pairs of vectors orthogonal?

- (a) $\vec{u} = (12, 3, -5), \vec{v} = (2, -3, 3).$
- (b) $\vec{u} = (3, 2, -5, 0), \vec{v} = (-4, 1, -2, 6).$
- (c) $\vec{u} = (-3, 7, 4, 0), \vec{v} = (1, -8, 15, -7).$

5. If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an orthogonal set in V and if c_1, c_2 , and c_3 are scalars, then show that $\{c_1\vec{v}_1, c_2\vec{v}_2, c_3\vec{v}_3\}$ is an orthogonal set.

- 6. Show that an orthogonal set of nonzero vectors is linearly independent.
- 7. Determine which of the sets below are orthogonal. Is any of them an orthonormal set?
 - (a) $\{(-1,4,-3),(5,2,1),(3,-4,-7)\}.$
 - (b) $\{(0,-1,0,0),(0,0,0,1),(0,0,-1,0)\}.$
 - (c) $\{(1,-2,1),(0,1,2),(-5,-2,1)\}.$
 - (d) $\{(2,-7,-1),(-6,-3,9),(3,1,-1)\}.$
 - (e) $\{(3,-2,1,3),(-1,3,-3,4),(3,8,7,0)\}.$

Answers

1. (a) $\frac{1}{\sqrt{5}}(1,2)$ (b) $\frac{1}{\sqrt{59}}(1,-3,7)$ (c) $\frac{1}{\sqrt{30}}(1,2,5)$.

- 2. (a) 9 (b) -4 (c) 22.
- 3. (a) 3/2 (b) -8/7 (c) -4/3,0 (d) -2,0,2.
- 4. (a) Yes. (b) Yes. (c) No.

٠.

6.

7. (a) Not orthogonal, so not orthonormal (b) Orthogonal and orthonormal (c) Orthogonal, but not orthonormal (d) Not orthogonal, so not orthonormal (e) Orthogonal, but not orthonormal.

4