Use the graph below to answer the following questions:

- 1. List any points at which f(x) is not continuous.
- 2. Are any of the discontinuities removable? If so, how could you define the function to make it continuous there? Are any of the discontinuities jump discontinuities?

3. Find a and b so that
$$f(x) = \begin{cases} \frac{\sin(2x)}{x}, & x < 0\\ a, & x = 0\\ be^x + 3, & x > 0 \end{cases}$$
 is continuous.

- 4. Use the log laws to simplify $\log_3\left(\frac{x^2y^{3/4}}{z^2+1}\right)$.
- 5. Find $\log_2\left(\frac{1}{4}\right)$ without using your calculator.
- 6. Find $\log_3\left(\frac{1}{9}\right) + \log_3(27)$ without using your calculator.
- 7. Solve $\ln(x+3) + \ln(x-1) = \ln(12)$.

8. Expand
$$\ln\left(\frac{y^3(x+3)^2}{x^4+5}\right)$$

9. Find
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
.

- 10. Use the Squeeze Theorem to show that
 - (a) $\lim_{x \to 0} \sqrt{x^3 + x^2} \sin \frac{\pi}{x} = 0.$ (b) $\lim_{x \to 0} x^4 \cos \frac{2}{x} = 0.$
- 11. Explain why the function is discontinuous at the given number a. Sketch the graph of the function near a.

(a)
$$f(x) = \frac{1}{x+2}, a = -2$$

(b) $f(x) = \begin{cases} \frac{1}{x+2} & \text{if } x \neq -2, a = -2\\ 1 & \text{if } x = -2 \end{cases}$,
(c) $f(x) = \begin{cases} 1-x^2 & \text{if } x < 1, a = 1\\ \frac{1}{x} & \text{if } x \geq 1 \end{cases}$,
(d) $f(x) = \begin{cases} \cos x & \text{if } x < 0, a = 0\\ 0 & \text{if } x = 1\\ 1-x^2 & \text{if } x > 0 \end{cases}$

- 12. Use IVT to show that there is a root of given equation in the specified interval.
 - (a) $x^4 + x 3 = 0, (1, 2)$
 - (b) $sinx = x^2 x, (1, 2)$
- 13. Which of the following functions has a removable discontinuity?

 $\mathbf{2}$

(a)
$$f(x) = \frac{x^4 - 1}{x - 1}, a = 1$$

(b) $f(x) = \frac{x^3 - x^2 - 2x}{x - 2}, a = 1$