MATH 115 Linear Algebra Worksheet 4

November 23, 2020

1. Find the inverses of the matrices using the formula given in the lecture (which is derived from Cramer's rule).

$$\begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 & 1 \\ -2 & 0 & 3 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

2. Use Cramer's rule to solve the following systems.

(a)

$$3x_1 - 2x_2 + x_3 = 4$$
$$x_1 + x_2 - x_3 = 2$$
$$x_1 + x_3 = 1$$

(b)

$$x_1 - 2x_2 + 3x_3 - x_4 = 1$$
$$2x_1 + x_3 = 2$$
$$x_1 + x_2 - x_4 = 0$$
$$x_2 - 2x_3 + x_4 = 3$$

- 3. Find the area of the triangle with the vertices given below.
 - (a) (1,2), (2,2), (2,4).
 - (b) (1,1), (1,1), (0,2).
- 4. Determine whether the following points are collinear.
 - (a) (1,3), (4,7), (2,13).
 - (b) (2,5), (0,1), (3,9).

- 5. Find an equation of the line passing through the following points.
 - (a) (2,3),(2,4).
 - (b) (4,7), (2,4).
- 6. Find the volume of the tetrahedron with the given vertices.
 - (a) (1,1,1), (0,0,0), (2,1,1), (1,1,2).
 - (b) (3,3,3), (3,1,3), (3,1,3), (2,3,2).
- 7. Determine whether the following points are coplanar.
 - (a) (1,2,7), (3,6,6), (4,4,2), (3,3,4).
 - (b) (0,0,1),(0,1,0),(1,1,0),(2,1,2).
- 8. Find an equation of the plane passing through the following points.
 - (a) (0,1,0),(1,1,0),(2,1,2).
 - (b) (0,0,0),(1,1,0),(0,1,1).
- 9. Let $\vec{v}=(4,1)$ and $\vec{w}=(-2,2)$. Draw $\vec{v}, \vec{w}, \vec{v}+\vec{w}, \vec{v}-\vec{w}$ and $\vec{w}-\vec{v}$ in the plane.
- 10. If $\vec{v} \vec{w} = (4, 1)$ and $\vec{v} + \vec{w} = (-1, 5)$ find \vec{v}, \vec{w} .
- 11. Write $\vec{w} = (1, 9)$ as a linear combination of $\vec{u} = (1, 2)$ and $\vec{v} = (3, -1)$.
- 12. Write $\vec{v} = (2, -3, 4)$ as a linear combination of $\vec{v}_1 = (1, 1, 1), \ \vec{v}_2 = (1, 1, 0)$ and $\vec{v}_3 = (1, 0, 0)$.

Answers

1.
$$\begin{pmatrix} 4/9 & 1/9 \\ -1/9 & 2/9 \end{pmatrix}$$
, $\begin{pmatrix} 3/8 & -1/8 & -3/8 \\ -3/8 & 1/8 & 11/8 \\ 1/4 & 1/4 & -1/4 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$.

2. (a)
$$(\frac{3}{2}, 0, -\frac{1}{2})$$
, (b) $(\frac{11}{3}, -\frac{17}{3}, -\frac{16}{3}, -2)$

- 3. (a) 1, (b) 0.
- 4. (a) not collinear, (b) not collinear.
- 5. (a) x = 2, (b) 3x 2y + 2 = 0.
- 6. (a) $\frac{1}{6}$, (b) 0.
- 7. (a) not coplanar, (b) not coplanar.
- 8. (a) y = 1, (b) x y + z = 0.
- 9.
- 10. $\vec{v} = (\frac{3}{2}, 3), \vec{w} = (\frac{-5}{2}, 2).$
- 11. $4\vec{u} \vec{v} = \vec{w}$.
- 12. $4\vec{v_1} 7\vec{v_2} + 5\vec{v_3} = \vec{v}$.