- 1. If $f(x) = 4x^3 + 7$, does f^{-1} exist? If so, find it. If not, explain why not.
- 2. Simplify $\tan \left(\cos^{-1}\left(\frac{3}{x}\right)\right)$.
- 3. Simplify $\csc\left(\sin^{-1}\left(\frac{3}{x}\right)\right)$.
- 4. Determine whether the function is one to one.
 - (a) f(x) = 2x + 4.
 - (b) f(x) = |x|.
 - (c) $f(x) = x^2 2x$.
- 5. Find the inverse of function of f.
 - (a) f(x) = 3x + 5.
 - (b) $f(x) = \frac{2-x^3}{5}$.
- 6. Find the domain and range of $f(x) = \sqrt{9-x^2}$.
- 7. Determine whether $f(x) = 2x^5 3x^2 + 2$ is odd, even or neither.
- 8. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ where f(x) = 3x 1 and $g(x) = 2x x^2$.
- 9. Simplify $\sin(\sin^{-1}\frac{1}{4})$.
- 10. Simplify $\cos^{-1}(\cos \frac{5\pi}{6})$.
- 11. Simplify $\tan(\sin^{-1}\frac{1}{2})$.
- 12. If x be real then the range of the function $f(x) = \frac{x}{1+x^2}$ is
 - (a) [-1/2, 1/2]
 - (b) (-2,2)
 - (c) (-1,1)
 - (d) (-1/2, 1/2)
- 13. If $f(x) = \frac{1}{1-x}$, g(x) = f(f(x)) and h(x) = f(f(f(x))), then $f(x) \cdot g(x) \cdot h(x)$ is equal to

(a)
$$\frac{1}{(1-x)^3}$$

(b)
$$\frac{1}{1-x}$$

(d)
$$-1$$

- 14. Suppose that $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$. Then find the function f(x).
- 15. $f(x) = \begin{cases} x+1, & x<0 \\ x^2, & x\geq 0 \end{cases}$ and $g(x) = \begin{cases} x^3, & x<1 \\ 2x-1, & x\geq 1 \end{cases}$. Then find f(g(x)) and find its domain and range.
- 16. Find the inverse of the function $f:[-1,1]\to[-1,1],\,f(x)=x^2\mathrm{sgn}(x)$