MATH 114/116 Linear Algebra Worksheet 2

March 6, 2022

1. For the matrix A and the vector (column-matrix) v given below, compute the product Av.

(a)
$$A = \begin{pmatrix} 2 & 5 \\ -3 & -1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} 1 & -3 \\ -2 & 1 \\ 3 & -1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$.

(c)
$$A = \begin{pmatrix} 6 & 2 \\ -3 & -1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$

(d)
$$A = \begin{pmatrix} 5 & -3 & 1 \\ -2 & 1 & 4 \\ 1 & 0 & -2 \end{pmatrix}$$
 and $v = \begin{pmatrix} 0 \\ 22 \\ -11 \end{pmatrix}$.

- 2. Consider the square matrices $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 3 \\ 0 & 4 \end{pmatrix}$.
 - (a) Is it true that AB = BA?
 - (b) Compute A^2 and B^2 .
- 3. Let A, B be square matrices of the same size. Then $(A+B)^2$ may not be equal to the matrix $A^2+2AB+B^2$. Observe this for $A=\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$.
- 4. For the matrices

$$A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 & 1 \\ 2 & 3 & -1 \end{pmatrix} \text{ and,}$$

$$C = \begin{pmatrix} 2 & -2 & 3 \\ -1 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$

answer the following questions:

- (a) Find, if possible, A+B, B+C, 5A, AB, BC, CB, A², C².
- (b) Find a matrix D such that

$$A - 3B + D = BC^2 + 2A.$$

- (c) Find B^T , C^T , $(BC)^T$.
- 5. Let $A = \begin{pmatrix} 3 & -1 \\ -5 & a \end{pmatrix}$. If $A^2 2A 8I_2 = 0_2$ determine a.
- 6. If $v = \begin{pmatrix} 2 \\ 3i \\ 1-i \end{pmatrix}$ and $w = \begin{pmatrix} -1+i \\ 2 \\ 3-i \end{pmatrix}$ find $v^T w$ and $w^T w$.
- 7. If $A = \begin{pmatrix} x & 1 \\ -2 & y \end{pmatrix}$, determine all values of x and y for which $A^2 = A$.
- 8. Let $A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -x & -y & z \\ 0 & y & 2z \\ x & -y & z \end{pmatrix}$.

Find all values x, y, z such that

$$B^T A B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$$

9. The *commutator* of two square matrices A and B is defined as [A, B] = AB - BA. Compute [A, B] for the following matrices:

(a)
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ -7 & 4 \end{pmatrix}.$$

(b)
$$A = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- 10. Find the intersection point of the lines below (if there is any).
 - (a) $L_1: 2x-3y+12=0$, $L_2: 3x+5y-8=0$.
 - (b) $L_1: y = -3x + 2$, $L_2: y = 9x + 4$.
 - (c) $L_1: 2x-5y-6=0$, $L_2: -6x+15y-6=0$.
- 11. Show that the following system of equations do not have any solution. What is the geometric explanation of this?

$$-3x + 6y = 11,$$

$$6x - 12y = 25.$$

$$x - y = 1,$$

$$y - x = 7.$$

12. Find the value of k for which the following system of equations have an infinite number of solutions.

$$5y + 3x = 27,$$
$$12x + 20y = 3k.$$

Answers

1. (a)
$$Av = 5 \begin{bmatrix} 2 \\ -3 \end{bmatrix} + 6 \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 40 \\ -21 \end{bmatrix}$$
.

(b)
$$Av = 5 \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} - 5 \begin{bmatrix} -3 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 20 \\ -15 \\ 20 \end{bmatrix}$$
.

(c)
$$Av = 7 \begin{bmatrix} 6 \\ -3 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 40 \\ -20 \end{bmatrix}$$
.

(d)
$$Av = 0 \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} + 22 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} - 11 \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix} =$$

$$\begin{bmatrix} -77 \\ -22 \\ 22 \end{bmatrix}$$

$$2. (a) \begin{bmatrix} -5 & 8 \\ -4 & 12 \end{bmatrix}.$$

(b)
$$A^2 = \begin{bmatrix} 3 & 5 \\ -5 & 8 \end{bmatrix}$$
, $B^2 = \begin{bmatrix} 1 & 9 \\ 0 & 16 \end{bmatrix}$.

$$4. \ A + B = \begin{bmatrix} 4 & 3 & 2 \\ 1 & 3 & 4 \end{bmatrix}, \ B + C \text{ is undefined,}$$

$$5A = \begin{bmatrix} 15 & -10 & 5 \\ -5 & 0 & 25 \end{bmatrix}, AB \text{ is undefined, } BC = \begin{bmatrix} 0 & 4 & 9 \\ -2 & -2 & 8 \end{bmatrix}, \ CB \text{ is undefined, } A^2 \text{ is undefined,}$$

$$6A = \begin{bmatrix} 15 & -3 & 7 \\ 0 & 4 & -1 \\ 8 & -4 & 11 \end{bmatrix}.$$

- 5. a = -1.

- 6. 4i, 12 8i. 7. x = 2, y = -1 and x = -1, y = 2. 8. $x = \pm \sqrt{2}/2$, $y = \pm \sqrt{3}/3$, $z = \pm \sqrt{6}/6$.
- 9. (a) 0. (b) $\frac{1}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- 10. (a) $(x,y) = -\frac{36}{19}, \frac{52}{19}$
 - (b) $(x,y) = -\frac{1}{6}, \frac{5}{2}$
 - (c) No solution.
- 11. You'll see that there are no solutions in (a) and (b). That means they are parallel to each other.
- 12. k = 36.