- 1. Find the Laplace transform of $f(t) = t^3 e^{-4t}$.
- 2. Find the Laplace transform of $f(t) = 6e^t \sin(3t) + 3e^{-4t} \cos(4t)$.
- 3. Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 2 \\ (t-2)^4, & t \ge 2 \end{cases}$.
- 4. Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 3 \\ t^2 6t + 11, & t > 3 \end{cases}$
- 5. Find the Laplace transform of $f(t) = -5\mathcal{U}(t-4) 4\mathcal{U}(t-7) 3\mathcal{U}(t-9)$.
- 6. Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 2 \\ 4\sin(\pi t), & 2 \le t < 3. \\ 0, & t > 3 \end{cases}$
- 7. Find the Laplace transform of $f(t) = e^{t-4}\mathcal{U}(t-4)$.
- 8. Find the Laplace transform of $f(t) = t\mathcal{U}(t-5)$.
- 9. Find the inverse Laplace transform of $F(s) = \frac{e^{-6s}}{s^2 + 1}$.
- 10. Find the inverse Laplace transform of $F(s) = \frac{5s-2}{(s+2)^2+1}$.
- 11. Find the inverse Laplace transform of $F(s) = \frac{2s-9}{s^2-6s+10}$.
- 12. Find the inverse Laplace transform of $F(s) = \frac{e^{-3s}(6-5s)}{s^2+1}$.
- 13. Use the Laplace transform to solve the following initial value problem: $y'-y = \begin{cases} 1, & 0 \le t < 1 \\ 0, & 1 \le t \end{cases}$, y(0) = -3.
- 14. Use the Laplace transform to solve the following initial value problem: y' + 3y = $\begin{cases} 0, & 0 \le t < 2 \\ 9, & 2 \le t < 5 \\ 0, & 5 < t < \infty \end{cases}$

$$0, \quad 5 \le t < \infty$$