1. Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 if

(a)
$$y(t) = t^2$$
 and $x(t) = \sin t$.

(b)
$$y(t) = \sin t$$
 and $x(t) = \cos t$.

(c)
$$y(t) = \cos t \text{ and } x(t) = \sin(t^2)$$
.

(d)
$$y(t) = e^t$$
 and $x(t) = t^2$.

(e)
$$y(t) = t^2 \text{ and } x(t) = \sin t$$
.

$$x = t - t^2 \quad \text{and} \quad y = t + t^2.$$

Calculate
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$ in terms of t .

$$x = \sin t$$
 and $y = \cos t$.

Calculate
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$ in terms of t .

$$x = e^t \quad \text{and} \quad y = e^{t^2 + 1}.$$

Calculate
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of t.