MATH 115 Linear Algebra Worksheet 2

November 5, 2020

1. For the matrix A and the vector (columnmatrix) v given below, compute the product Av.

(a)
$$A = \begin{pmatrix} 2 & 5 \\ -3 & -1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.
(b) $A = \begin{pmatrix} 1 & -3 \\ -2 & 1 \\ 3 & -1 \end{pmatrix}$ and $v = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$.
(c) $A = \begin{pmatrix} 6 & 2 \\ -3 & -1 \end{pmatrix}$ and $v = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$.
(d) $A = \begin{pmatrix} 5 & -3 & 1 \\ -2 & 1 & 4 \\ 1 & 0 & -2 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ 22 \\ -11 \end{pmatrix}$.

2. Consider the square matrices $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 3 \\ 0 & 4 \end{pmatrix}$.

- (a) Is it true that AB = BA?
- (b) Compute A^2 and B^2 .
- 3. Let A, B be square matrices of the same size. Then $(A+B)^2$ may not be equal to the matrix $A^2 + 2AB + B^2$. Observe this for $A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$.
- 4. For the matrices

$$A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 & 1 \\ 2 & 3 & -1 \end{pmatrix} \text{ and,}$$
$$C = \begin{pmatrix} 2 & -2 & 3 \\ -1 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$

answer the following questions:

(a) Find, if possible, A+B, B+C, 5A, AB, BC, CB, A^2 , C^2 . (b) Find a matrix D such that $A - 3B + D = BC^2 + 2A.$ (c) Find B^T , C^T , $(BC)^T$. 5. Let $A = \begin{pmatrix} 3 & -1 \\ -5 & a \end{pmatrix}$. If $A^2 - 2A - 8I_2 = 0_2$ determine a. 6. If $v = \begin{pmatrix} 2\\ 3i\\ 1-i \end{pmatrix}$ and $w = \begin{pmatrix} -1+i\\ 2\\ 3-i \end{pmatrix}$ find $v^T w$ and $w^T w$ 7. If $A = \begin{pmatrix} x & 1 \\ -2 & y \end{pmatrix}$, determine all values of x and y for which $A^2 = A$. 8. Let $A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -x & -y & z \\ 0 & y & 2z \\ x & -y & z \end{pmatrix}$. Find all values x, y, z such that $B^T A B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$ 9. The *commutator* of two square matrices A and B is defined as [A, B] = AB - BA. Compute [A, B] for the following matrices:

(a)
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ -7 & 4 \end{pmatrix}.$$

(b) $A = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$

- 10. Find the intersection point of the lines below (if there is any).
 - (a) $L_1: 2x 3y + 12 = 0$, $L_2: 3x + 5y 8 = 0$. (b) $L_1: y = -3x + 2$, $L_2: y = 9x + 4$. (c) $L_1: 2x - 5y - 6 = 0$, $L_2: -6x + 15y - 6 = 0$.
- 11. Show that the following system of equations do not have any solution. What is the geometric
 - (a)

explanation of this?

$$-3x + 6y = 11,$$

 $6x - 12y = 25.$

(b)

$$\begin{aligned} x - y &= 1, \\ y - x &= 7. \end{aligned}$$

12. Find the value of k for which the following system of equations have an infinite number of solutions.

$$5y + 3x = 27,$$
$$12x + 20y = 3k.$$

Answers

1. (a)
$$Av = 5\begin{bmatrix} 2\\ -3 \end{bmatrix} + 6\begin{bmatrix} 5\\ -1 \end{bmatrix} = \begin{bmatrix} 40\\ -21 \end{bmatrix}$$
.
(b) $Av = 5\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix} - 5\begin{bmatrix} -3\\ 1\\ -1 \end{bmatrix} = \begin{bmatrix} 20\\ -15\\ 20 \end{bmatrix}$.
(c) $Av = 7\begin{bmatrix} 6\\ -3 \end{bmatrix} - 1\begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} 40\\ -20 \end{bmatrix}$.
(d) $Av = 0\begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} + 22\begin{bmatrix} -3\\ 1\\ 0 \end{bmatrix} - 11\begin{bmatrix} 1\\ 4\\ -2 \end{bmatrix} = \begin{bmatrix} -77\\ -22\\ 22 \end{bmatrix}$.
2. (a) $\begin{bmatrix} -5 & 8\\ -4 & 12 \end{bmatrix}$.
(b) $A^2 = \begin{bmatrix} 3 & 5\\ -5 & 8 \end{bmatrix}$, $B^2 = \begin{bmatrix} 1 & 9\\ 0 & 16 \end{bmatrix}$.
3.

4.
$$A + B = \begin{bmatrix} 4 & 3 & 2 \\ 1 & 3 & 4 \end{bmatrix}$$
, $B + C$ is undefined,
 $5A = \begin{bmatrix} 15 & -10 & 5 \\ -5 & 0 & 25 \end{bmatrix}$, AB is undefined, $BC = \begin{bmatrix} 0 & 4 & 9 \\ -2 & -2 & 8 \end{bmatrix}$, CB is undefined, A^2 is undefined,
 $C^2 = \begin{bmatrix} 15 & -3 & 7 \\ 0 & 4 & -1 \\ 8 & -4 & 11 \end{bmatrix}$.
5. $a = -1$.
6. $4i, 12 - 8i$.
7. $x = 2, y = -1$ and $x = -1, y = 2$.
8. $x = \pm \sqrt{2}/2, y = \pm \sqrt{3}/3, z = \pm \sqrt{6}/6$.
9. (a) 0. (b) $\frac{1}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
10. (a) $(x, y) = -\frac{36}{19}, \frac{52}{19}$.
(b) $(x, y) = -\frac{1}{6}, \frac{5}{2}$.
(c) No solution.
11. You'll use that there are no solutions in (c) and

11. You'll see that there are no solutions in (a) and (b). That means they are parallel to each other.

12.
$$k = 36.$$