- 1. If $f(x) = 4x^3 + 7$, does f^{-1} exist? If so, find it. If not, explain why not.
- 2. Simplify $\tan\left(\cos^{-1}\left(\frac{3}{x}\right)\right)$.
- 3. Simplify $\csc\left(\sin^{-1}\left(\frac{3}{x}\right)\right)$.
- 4. Determine whether the function is one to one.
 - (a) f(x) = 2x + 4.
 - (b) f(x) = |x|.
 - (c) $f(x) = x^2 2x$.
- 5. Find the inverse of function of f.
 - (a) f(x) = 3x + 5.
 - (b) $f(x) = \frac{2-x^3}{5}$.
- 6. Find the domain and range of $f(x) = \sqrt{9 x^2}$.
- 7. Determine whether $f(x) = 2x^5 3x^2 + 2$ is odd, even or neither.
- 8. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ where f(x) = 3x 1 and $g(x) = 2x x^2$.
- 9. Simplify $\sin(\sin^{-1}\frac{1}{4})$.
- 10. Simplify $\cos^{-1}(\cos\frac{5\pi}{6})$.
- 11. Simplify $\tan(\sin^{-1}\frac{1}{2})$.
- 12. If for a function f(x), f(x+y)=f(x)+f(y) for all reals x and y then f(0) is equal to
 - (a) 1
 - (b) 0
 - (c) $f(x) \forall x \in \mathbb{R}$
 - (d) None of these

- 13. If x be real then the range of the function $f(x) = \frac{x}{1+x^2}$ is
 - (a) [-1/2, 1/2]
 - (b) (-2,2)
 - (c) (-1,1)
 - (d) (-1/2, 1/2)
- 14. If $f(x) = \frac{1}{1-x}$, g(x) = f(f(x)) and h(x) = f(f(f(x))), then $f(x) \cdot g(x) \cdot h(x)$ is equal to
 - $\left(\mathbf{a}\right) \ \frac{1}{(1-x)^3}$
 - (b) $\frac{1}{1-x}$
 - (c) 1
 - (d) -1