Worksheet 1

Name:

1. State the order and the degree of the given ordinary differential equation. Determine whether the equation is linear or nonlinear.

(a)
$$t^5 y^{(4)} - t^3 y'' + 6y = 0$$

(b) $\frac{d^2 y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$
(c) $\frac{d^2 u}{dr^2} + \frac{du}{dr} + u = \cos(r+u)$
(d) $(1-x)y'' - 4xy' + 5y = \cos(x)$

(e)
$$x\frac{d^3y}{dx^3} - \left(\frac{dy}{dx}\right)^4 = 0$$

(f)
$$\frac{dy}{dx} = \frac{\cos y}{y}$$

2. Verify that the indicated expression is an implicit solution of the given first-order differential equation.

$$2xydx + (x^2 - y)dy = 0; \quad -2x^2y + y^2 = 1$$

- 3. What function do you know from calculus is such that its second derivative is itself? Write the answer in the form of a second-order differential equation with a solution.
- 4. A one parameter family (with parameter c) of solutions to the problem $y' = y y^2$ is $y = \frac{1}{1 + ce^{-x}}$.
 - (a) Find c so that y(1) = -2.

- (b) Find *c* so that y(-2) = -1.
- 5. The general solution of the equation y'' + 9y = 0 is $y = c_1 \cos(3x) + c_2 \sin(3x)$. Find values of c_1 and c_2 so that y(0) = -4 and y'(0) = -9.
- 6. The general solution of the equation y'' 9y = 0 is $y = c_1 e^{3x} + c_2 e^{-3x}$. Find values of c_1 and c_2 so that y(0) = -7 and y'(0) = -3.
- 7. Find corresponding differential equation for each curve families below. (a) $y = c_1 e^{-2x} + c_2 e^{3x}$.
 - (b) $y = c_1 \cos x + c_2 \sin x$.

(c)
$$y = c_1 x^2 + c_2$$
.

- 8. Solve the given differential equations by separation or variables.
 - (a) $yy' = x(1+y^2)$.
 - (b) $y' = \frac{(1-y)^5}{4}$. (c) $y' = 5(1+x)^4$. (d) y' = y(y-1). (e) $y' = 2xe^{x^2-y}$.
- 9. Solve the separable initial value problem.

$$y' = 2x\cos(x^2)(1+y^2), \quad y(0) = 1.$$