Important Trigonometry Identities

You are expected to have the following facts memorized.

1.
$$\sin(x) = \frac{\text{opposite}}{\text{hypotenuse}}$$

2. $\cos(x) = \frac{\text{adjacent}}{\text{hypotenuse}}$
3. $\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{\text{opposite}}{\text{adjacent}}$
4. $\sin(-x) = -\sin(x)$
5. $\cos(-x) = \cos(x)$
6. $\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
7. $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$
8. $\sec(x) = \frac{1}{\cos(x)} = \frac{\text{hypotenuse}}{\text{adjacent}}$
9. $\csc(x) = \frac{1}{\sin(x)} = \frac{\text{hypotenuse}}{\text{opposite}}$
10. $\cot(x) = \frac{1}{\tan(x)} = \frac{\text{adjacent}}{\text{opposite}}$
11. $\sin^2(x) + \cos^2(x) = 1$
12. $\tan^2(x) + 1 = \sec^2(x)$
13. $1 + \cot^2(x) = \csc^2(x)$
14. $\sin(2x) = 2\sin(x)\cos(x)$
15. $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$
16. $\cos^2(x) = \frac{1}{2}(1 + \cos 2x)$
17. $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$

You should also know the graphs of the trigonometric functions as well as the values of the trigonometric functions for the angles $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$, and π . You can use reference angles to find the values of the trigonometric functions for the angles in the other 3 quadrants.